[0018] FIG. 2B is an image of the fluorescence of Rhodamine B introduced in the first inlet mixed with the buffer solution introduced in the second inlet.

[0019] FIG. 2C is a similar image as FIG. 2B, except the flow is 0.81 cm/s.

[0020] FIG. 3 illustrates experimental results of the degree of mixing of the embodiment of FIG. 2A, wherein an electroosmotic flow of 0.06 cm/s was achieved.

[0021] FIG. 4 illustrates the same experimental set up as FIG. 2C, with the electroosmotic flowrate of 0.81 cm/s.

[0022] FIG. 5 illustrates the same experimental set up of FIGS. 3 and 4, with a pressure driven flow.

[0023] FIG. 6 illustrates a second preferred embodiment of the present invention.

[0024] FIG. 7 is a white light microscopy image of the embodiment of FIG. 6.

[0025] FIG. 8 illustrates experimental results of the degree of mixing of two reagents using embodiment of FIG. 7 and an embodiment similar to embodiment of FIG. 7 but with three wells instead of four.

[0026] FIG. 9 illustrates the results of the same experimental set up as FIG. 8 with a higher electroosmotic flowrate of 0.81 cm/s.

[0027] FIG. 10 illustrates an embodiment of a stream splitter wherein two inlet ports form a confluent stream wherein the fluid on one half of the channel is split into two streams located on opposite sides of the channel that then exit through two outlets.

[0028] FIG. 11 illustrates an embodiment of a four-well mixer that was analyzed with computational fluid dynamics techniques for variations in the present invention.

[0029] FIG. 12 illustrates some computational analysis of the flow patterns for various depths of wells, based on the embodiment shown in FIG. 11.

[0030] FIG. 13 illustrates some computational results of various angles of the walls, based on the embodiment of FIG. 11.

[0031] FIG. 14A illustrates a plan view of the flow pattern of an embodiment of the present invention of a mixer with quantity 4 wells oriented at 15 degrees off of the axis of flow.

[0032] FIG. 14B illustrates a cross sectional view of the flow pattern of FIG. 14A, as observed from the cross section E.F.

[0033] FIG. 15 illustrates some computational results of changes in the electroosmotic (EO) mobility of the surfaces of the wells.

[0034] FIG. 16A illustrates a plug of fluid introduced to and transported by a channel.

[0035] FIG. 16B illustrates an embodiment of the present invention wherein a plug of fluid is introduced into a channel in which four wells are disposed.

[0036] FIG. 17 illustrates some results of a computational analysis of the flow of the embodiments of FIGS. 16A and 16B.

[0037] FIG. 18 illustrates the laser apparatus used to manufacture the experimental devices referenced in the specification.

DETAILED DESCRIPTION OF THE INVENTION

[0038] FIG. 1 illustrates an embodiment 100 of the present invention of a microfluidic mixer. Two inlet streams 102 and 104 are combined and mixed in the mixing region 106 to produce a mixed flow that exhausts out of the outlet 108. The mixing region 106 comprises several wells 110, 112, 114, 116, 118, 120, 122, 124, 126, and 128 that are recessed into the outlet 108.

[0039] In a first embodiment, the channels have a uniform, trapezoidal cross section, with the width at the top being 72 μ m, depth 31 μ m, and the width at the bottom being 28 μ m. The wells 110, 112, 114, 116, 118, 120, 122, 124, 126, and 128 have a depth of 85 μ m in the center of the well.

[0040] The wells 110, 112, 114, and 116 are parallel to each other and uniform in size. The wells are angled approximately 45 degrees from the axis of the outlet 108. The wells 118, 120, 122, 124, 126, and 128 are perpendicular to each other and are approximately 45 degrees from the axis of the outlet 108.

[0041] The flow of reagents through the embodiment 100 may be electrokinetic, electroosmotic, or pressure driven flow. Since the electroosmotic flow is a wall driven phenomenon based on the surface charge of the microchannel wall and on the local electric field, the fluid may enter and follow the contour of the wells, with the slanted well design used to induce lateral transport across the channel. In a pressure driven flow, the flow is not a wall driven phenomenon and therefore the fluid is not forced to enter the wells like electroosmotic flow. However, the presence of the wells induces some lateral transport across the channel in pressure driven flow, although not as effective as with electroosmotic flow. The presence of the wells under electrokinetic flow, being the combination of both electroosmotic flow and electrophoretic flow, will also enhance the mixing.

[0042] In an experiment with the present embodiment, a confluence of Rhodamine B in a carbonate buffer was introduced into inlet 102 and carbonate buffer was introduced into inlet 104. The fluorescence of the Rhodamine B was measured to indicate the degree of mixing achieved by the embodiment 100.

[0043] The method of manufacture of the embodiment used in the experiment, as well as the experimental setup and method of measurements, are given elsewhere in this specification.

[0044] For the experiments, the length of each channel arm was 0.8 cm long, and the dimensions of the channel are 72 μ m wide at the top, 28 μ m wide at the bottom, and 31 μ m deep. The laser etched wells that spanned across the entire width of the channel had a depth of 85 μ m in the center of the well relative to the bottom of the imprinted channel. The intensity measurement was taken at distance 130 or 443 μ m from the beginning of the confluent region.

[0045] FIGS. 2A-C illustrate the results of the experiments as detailed elsewhere in this specification. FIG. 2A is a white light microscopy image of the embodiment of FIG. 1.